AI资讯站在时代最前沿

【AI+农业】普渡大学2022博士论文《探索精益和绿色物联网 (IOT) 无线传感器框架:精准农业实践》,158页pdf
AI论文助手

【AI+农业】普渡大学2022博士论文《探索精益和绿色物联网 (IOT) 无线传感器框架:精准农业实践》,158页pdf

摘要: 美国中西部(印第安纳州)地区的作物生产一直面临环境和经济可持续性问题。化肥(氮和磷)的使用、农业机械燃料成本和劳动生产率的下降导致农业投入的使用没有得到优化,这些趋势一直在增加。相关文献综述描述了精益和绿色实践,如盈利能力(投资回报)、运营成本降低、危险废物减少、交付绩效和整体生产力,可在精准农业实践(可变灌溉、可变施肥、基于云的分析和用于农机导航的远程信息处理)。 综述文献描述了基于物联网 (IoT) 的精准农业实践的低采用率,例如可变速率肥料 (39%)、可变速率农药 (8%)、可变速率灌溉 (4%)、基于云的数据分析 ( 21 %) 和远程信息处理 (10 %) 在中西部作物生产者中。采用基于物联网的精准农业实践的障碍包括成本效益、电力要求、通信范围、数据延迟、数据可扩展性、数据存储、数据处理和数据互操作性。在基于物联网的精准农业实践中,对主题专家 (SME) (N=18) 进行了焦点小组访谈 (n=3),以了解和定义与障碍相关的决策变量。内容分析和随后的 ISM 模型为部署 IoT 无线传感器节点以提高性能提供了一种行动研究方法。这些改进使可变成本降低了 94%,功耗成本降低了 60%,并改进了数据互操作性和用户交互的基于物联网无线传感器的数据管道,从而改进了精准农业实践的采用。来自 IoT 传感器部署的性能数据 (n=2505) 的关系分析经验性地验证了 ISM 模型,并解释了功耗的变化,以缓解生产者采用 IoT 的情况。本研究开发了基于生长季节通过相关性预测物联网功耗的未来研究范围。 这项研究的意义告诉采用者(作物生产者)、研究人员和精准农业从业者,精益和绿色框架在很大程度上是由基于物联网传感器的精准农业解决方案中的成本和电力问题驱动的。 图:用于精准农业应用的物联网(IoT)无线传感器框架 1 引言 1.1 背景 基于氮磷肥施用量的增加趋势,美国中西部地区的玉米和大豆生产存在经济和环境问题(USDA NASS Indiana,2019 年)。运营成本和燃料消耗成本随着劳动生产率的下降而增加,导致农场净收入下降(USDA NASS Indiana,2019)。因此,可以通过采用精准农业应用(可变灌溉、可变施肥、基于分析和用于农机导航的远程信息处理),以改善农业运营和净盈利能力。然而,DeBoer &...
100篇人工智能论文
AI论文助手

100篇人工智能论文

AI/ML景观 这是一篇关于100篇 人工智能 论文的文章来帮助解开 人工智能 景观的神秘。最初的部分是关于基础知识,并提供一些重要的链接来加强你的基础。后一部分链接到一些伟大的研究论文,是为那些想了解理论和细节的高级实践者。 人工智能是一场正在改变人类生活和工作方式的革命。这是一个广义的概念,即机器能够以人类认为“智能”的方式执行任务——这个术语可以追溯到70年前(见这里的历史 https://medium.com/future-today/understanding-artificial-intelligence-f800b51c767f),艾伦·图灵定义了一个测试,图灵测试 ( https://en.wikipedia.org/wiki/Turing_test),用来测量机器表现出与人的智能行为相当或不可区分的智能行为的能力。革命有许多复杂的运动部分。我的目标是简化并提供一个关于这些复杂部分如何在一个3层蛋糕中组合在一起的观点。顶层是人工智能服务,即解决实际问题的真实应用程序,中间层是基本的ML算法,而底层是支持前两层的ML平台。 首先是基本定义,人工智能是由机器 ( https://en.wikipedia.org/wiki/Machine) 表现出来的智能( https://en.wikipedia.org/wiki/Intelligence),而不是由人类表现出来的自然智能。机器学习(ML)是人工智能的一个子集,它基于这样一种理念:我们应该真正能够让机器访问数据,让它们自己学习。神经网络(NN)是ML的一个子集,在ML中,计算机系统被设计成像人脑一样通过对信息进行分类来工作。深度学习(Deep learning,DL)是ML的一个子集,它使用多层人工神经网络来解决诸如目标检测、语音识别和语言翻译等复杂问题。 关于AI、ML和DL之间的差异,可以在这里和这里找到一些很好的阅读资料。 https://towardsdatascience.com/notes-on-artificial-intelligence-ai-machine-learning-ml-and-deep-learning-dl-for-56e51a2071c2https://towardsdatascience.com/ai-machine-learning-deep-learning-explained-simply-7b553da5b960 神经网络的基础知识在这里和这里通过代码都有很好的解释。 https://gadictos.com/neural-network-pt1/https://towardsdatascience.com/first-neural-network-for-beginners-explained-with-code-4cfd37e06eafhttps://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks-d49f22d238f9 人工智能可以根据这里解释的窄型、一般型或强型分类,也可以根据这里解释的反应机器、有限记忆、思维理论和自我意识的水平分类 。 https://www.javatpoint.com/types-of-artificial-intelligencehttps://www.aware.co.th/three-tiers-ai-automating-tomorrow-agi-asi-ani/ ML算法 ML算法可以分为有监督、无监督和强化学习(这里 https://www.newtechdojo.com/list-machine-learning-algorithms/、这里 https://towardsdatascience.com/types-of-machine-learning-algorithms-yo
突破100万用户!华人本科生最强AI检测器GPTZero:美国宪法是AI写的
AI论文助手

突破100万用户!华人本科生最强AI检测器GPTZero:美国宪法是AI写的

ChatGPT的爆火,不仅让众多学生有了作弊利器,也让一众自己写论文的清白好学生,无故蒙冤! 要说起原因,不由让人深感荒谬——都是因为那些为了「用魔法打败魔法」而造出的各种AI检测器。 实测不可靠,美国宪法竟出自AI之手? 众多AI检测器中,最出名的一个便是由普林斯顿华人本科生Edward Tian创建的GPTZero——它不仅免费,而且效果拔群。 我们只需把文字复制粘贴进去,GPTZero就可以明确地指出一段文字中,哪段是AI生成的,哪段是人类写的。 原理上,GPTZero主要靠「困惑度」(文本的随机性)和「突发性」(困惑度的变化)作为指标进行判断。在每次测试中,GPTZero还会挑选出困惑度最高的那个句子,也就是最像人话的句子。 然而这个方法其实并不完全可靠。 最近,有好奇的网友就用「美国宪法」做了一个实验,而结果更是让人大跌眼镜—— GPTZero表示,美国宪法是AI生成的! 无独有偶,有越来越多的学生发现,自己辛辛苦苦写的论文,也会被检测器判定为AI生成的。 AI说你是用AI写的 ,你就是用AI写的! 前两天,Reddit上就有一位12年级学生向大家求助说,老师用GPTzero检测之后,坚信论文中的部分内容就是由AI生成的。 「我一直是个成绩优异的学生,我不知道为什么我的老师会认为我作弊。我把一切都告诉了我的老师,但他还是不相信我。」 对此老师解释称,使用grammarly(一款在线语法纠正和校对工具)没问题,但GPTzero给出的结果已经非常明确——你就是用了ChatGPT。 绝望的学生表示,自己会提供所有可能的证据,来证明这个所谓的人工智能探测器是错的。 对此,有网友表示完全无法理解老师的做法:「什么叫AI说你作弊,你就是作弊,证据何在?」 另一位网友则给出了更加实用的建议:把ChatGPT出现之前的文章丢进去看看结果如何。(类似于之前的那个「美国宪法」实验) 此外,还可以用OpenAI的官方声明来为自己辩护:「我们真的不建议孤立地使用这个工具,因为我们知道它可能出错,就像使用人工智能进行任何种类的评估一样」。 还有网友分析称,作业论文在结构上通常都有着较为严格的要求,而ChatGPT在训练中又进行了大量的学习。 结果就是,AI生成的内容看起来都是标准的五段式论文。 因此,学生的作业从一开始,就注定了会和ChatGPT生成的文本非常相似。 GPTzero虽然声称假阳性率 所以该网友认为,我们对GPTzero,或OpenAI的分类器,或任何声称能够可靠地区分人类和AI的工具,都应该抱有怀疑的态度。 ChatGPT暴露了论文设定上的缺陷 AI的出现,让作弊的学生提供的巨大的便利,却也让不作弊的学生,深陷无尽的麻烦。 那么,让我们干脆回归问题的本质,在学校教育中,到底该不该允许学生使用ChatGPT呢? 近日,作家Colm OShea在文章《感谢ChatGPT揭露本科论文的平庸》中表示,本科的论文重点是教育,而不是知识的进步。这其中最关键的是,在写作过程中,是要训练和展示你有目的地处理信息的能力,而不是让你做一个有价值的知识产出。有价值的产出是由训练有素的合格劳动力负责的。 一般来说,文章起源于古希腊和罗马作家的学术文本,或早期基督教会教父的书信,但其实现代文章的形式起源于蒙田。 这位富有而博学的16世纪法国哲学家,在人生中的某个时刻,忽然对自己庞大的图书馆感到怀疑:「如果我以为自己所知道的一切,其实都是扯淡的,怎么办?」 于是,他开始做这件事——写随笔,这个行为具有深远的意义:让他重新看待世界。 他起的标题千奇百怪,比如「拇指」「畸形儿童」「食人族」,展现出他广泛而奇特的精神领域。他的每篇文章都围绕一个观点,并从各个角度进行审视,来找到新的见解,仿佛这些角度是由另一个意识撰写的一样。 录取之后,一部分学生又会去恳求教授,给他们提供一个正确的模板来模仿,亦或者,他们会找抄袭或论文代笔去走捷径,走向他们想象中的未来。 就好像到了大学以后,学习和思考就再也不用写作来辅助了一样。 不过,这是在ChatGPT火起来之前。现在有了ChatGPT,论文剽窃和代写的乱象已经蔚然成风。虽然说这些现象并不能只怪AI,但已经足以说明大学教育中的问题。 症结在哪里? 这场危机,其实源于大学本科教育中一个更巨大、更古老的问题。 长期以来,人们过分关注收敛思维——换句话说,对于有固定解决方案的问题,去测试学生能否获得问题的「正确」答案。 大学申请的测试通常注重两大类:知识基础和认知能力。标准化的测试能够检测学生对学科掌握程度,但这忽略了另一个重要的领域:发散性思维。 而发散性思维,正是创造性工作的前提。 而且,发散性思维是与标准化背道而驰的。发散思维靠的是深度模式识别和类比(口头、视觉、数学)等机制,而要让ChatGPT从令人眼花缭乱的大数据集中收集「要点」,这并不是它们擅长的。 这种思维可以用一个词形容,那就是「机智」(这种机智是一种令人惊讶的灵感,能够把两个不相干的事物进行融合,或者联系起来),虽然听起来有些玄乎,但这种能力非常重要。 认知科学家、类比思维权威专家Dedre Gentner解释说,生动地向自己或他人解释某事可以培养抽象能力,还可以发现不同领域之间的新联系。...
ChatGPT的SCI写作指令:润色指令与润色效果初评
AI提示指令

ChatGPT的SCI写作指令:润色指令与润色效果初评

ENJOY READING 智慧土木·紧跟时代 ChatGPT的SCI写作指令:润色指令与润色效果初评 ChatGPT已经历多个版本的迭代和改进。GPT-3.5(常用的免费版本)架构引入了更大的模型规模和更多的训练数据,使得语言理解和生成的质量大幅提高。ChatGPT可在多个方面对科研人员提供帮助,其中之一就是SCI论文润色。通过输入论文的摘要、引言或者段落,科研人员可获得ChatGPT生成的回复,这些回复包括修改建议、语法纠正、表达方式优化等。本期将提供一些主流的ChatGPT润色指令,并对其润色效果进行初评。先给出省流版结论:ChatGPT润色挺好,但仍需本人校核。 1、提高句子之间逻辑性和连贯性,同时给出中文润色解释 指令: Utilizing your advanced language analysis capabilities, carefully analyze the logical flow and coherence among sentences within each paragraph in the provided text. Identify any areas where the flow or connections between sentences can be improved, and provide specific suggestions...

AI论文助手超级助手