文章主题:ChatGPT, OpenAI, 数学能力

666AI工具大全,助力做AI时代先行者!

🔥ChatGPT热度飙升,OpenAI技能再升级🚀,学术界热议如何精准鉴定其生成内容已成为热门话题🔍。随着ChatGPT的持续火爆,众多竞品纷至沓来📝,如何在信息海洋中区分真伪,成为衡量技术实力的关键挑战。学界专家们正倾力研究,探索更先进的检测方法,以确保知识传播的准确无误📖。让我们共同期待这一领域的创新突破,为人工智能的发展注入更多可信度💪。

🎉ChatGPT的惊人潜力🔥:自其面世以来,这款人工智能工具的多功能性不断被广大用户探索,从深度学习模型到智能家居助手,它的创新应用令人瞩目。然而,细心的测试揭示了一个不为人知的秘密——数学难题似乎成了ChatGPT的一个挑战领域。即使是基础的“鸡兔同笼”问题,它也未能给出精准的答案,这一意外的表现引发了人们对它全面能力的深入探讨。🚀

大概是考虑到了这一点,ChatGPT 刚刚宣布了一次重要更新:提升了「真实性」和「数学能力」。

🔥ChatGPT 震撼再升级!🚀自11月出道以来,第三次迭代已悄然而至!🔍尽管官方的「更新预告」略显含蓄,但创新的步伐从未停歇,用户们又将迎来一场探索未知的科技盛宴!🌟每一次迭代都意味着新功能的诞生与优化,让我们一起期待这次独特且深度的转变吧!💡如果你对ChatGPT的新能力充满好奇,不妨跟随它的步伐,开启你的智能新篇章!💖

几日前,计算机科学家、Wolfram 语言之父 Stephen Wolfram 将理工科神器 Wolfram|Alpha 与 ChatGPT 结合起来

,为后者注入超强计算知识实现互补,效果相当不错。

那么,这次更新之后的 ChatGPT 数学能力可与其一战吗?

看起来…… 对比的结果不尽如人意:

「只能说神经网络不是用来干这个的」,Sebastian Raschka 都觉得无奈了。

还有人发现,升级后的 ChatGPT「脾气逐渐暴躁」:

「你数学是哪位老师教的?」面对一道十以内加减法的题目,它的语气像极了辅导孩子作业的家长。

这也许是「偶然现象」?看来数学是真难。

不管怎么说,我们可以期待一波后续的有趣 Demo 了。

太卷了:ChatGPT 和它的竞争者们

🚀即将到来的6-12月,创新浪潮汹涌,OpenAI API引领ChatGPT开启新篇章!💡生成式AI对知识管理的革命性颠覆,预计将引领一场前所未有的实验狂潮。💼公司若能巧妙利用这一先进技术,将解锁无限可能,颠覆传统认知。🏆未来已来,准备好迎接这场知识与技术的深度融合盛宴吧!

Nicola Morini Bianzino。

Nicola Morini Bianzino, the global CTO of EY, recently shared at an open event that while ChatGPT has yet to deliver a ‘game-changing’ use case in enterprises, the shift is imminent. He projects a surge of experimentation within the next 6-12 months, driven largely by companies’ ability to leverage OpenAI’s API for integration with ChatGPT. The potential impact on business operations and innovation can’t be overlooked. Stay tuned for exciting developments in the realm of AI-driven chat platforms. #ChatGPT #EY #AIExperimentation

生成式AI引领知识管理新变革,Nicola Morini Bianzino 称之为 AI 的智慧转折点。传统的‘二维扁平化’知识管理模式已无法满足快速变化的信息需求,互动与对话的便捷性大打折扣。我们曾努力通过专家系统实现智能化,却受限于其僵化的特性。然而,现代生成式AI技术正颠覆这一局面,有望打破信息孤岛,提升知识利用效率。它具备更强的适应性和灵活性,为知识管理带来了革命性的可能。让我们期待这个领域未来的创新与突破吧!🌟📚💻

与此同时,ChatGPT 的竞争者们也不断涌现,这个赛道变得越来越「卷」。从 Anthropic 公司的 Claude、DeepMind 公司的 Sparrow、谷歌公司的 LaMDA 到 Character AI,每天似乎都有新竞争者步入赛场。

Anthropic 是一家旧金山的初创公司,由几位离开 OpenAI 的研究人员于 2021 年创立。公司成立不到一年后就宣布了高达 5.8 亿美元的融资,上周五还被报道即将增加 3 亿美元融资。

这家公司开发了一个名为「Claude」

的 AI 聊天机器人,目前通过 Slack 集成在封闭测试版中可用,据报道它与 ChatGPT 相似,甚至有一些改进。Anthropic 描述自身的使命为「致力于构建可靠、可解释和可操纵的 AI 系统」。

DeepMind 同样是这条赛道上不可忽视的力量。这家公司在 9 月份的一篇论文中介绍了 「Sparrow」,被誉为「朝着创建更安全、偏差更小的机器学习系统迈出的重要一步」。Sparrow 是「一种有用的对话智能体,可以降低不安全和不适当答案的风险」,旨在「与用户交谈、回答问题并在有助于查找证据」。

不过,DeepMind 的安全研究员、 Sparrow 论文的主要作者 Geoffrey Irving 表示,DeepMind 认为 Sparrow 是一个基于研究的概念验证模型,尚未准备好部署。

在两周前的《时代周刊》文章中,该公司的首席执行官兼联合创始人 Demis Hassabis 表示,DeepMind 正在考虑在 2023 年的某个时候发布其聊天机器人 Sparrow 的「私人测试版」。如此一来,公司就可以开发基于强化学习的功能,比如引用来源 —— 这是 ChatGPT 所没有的能力。

再说到谷歌的 LaMDA,这一模型曾在去年夏天引发过热议 —— 谷歌工程师 Blake Lemoine 因声称 LaMDA 具有感知能力而被解雇。

即使不像 Lemoine 认为的那样,LaMDA 仍被认为是 ChatGPT 最大的竞争对手之一。谷歌在 2021 年发布的博客文章中表示,LaMDA 的对话技巧「已经酝酿多年」。与 ChatGPT 一样,LaMDA 建立在 Transformer 架构之上,也接受过对话方面的训练。

根据谷歌的说法,「在训练期间,LaMDA 发现了一些将开放式对话与其他形式的语言区分开来的细微差别。」

《纽约时报》在 1 月 20 日的一篇报道中提到,谷歌创始人 Larry Page 和 Sergey Brin 上个月会见了公司高管,讨论了 ChatGPT 可能对谷歌 1490 亿美元的搜索业务构成的威胁。谷歌发言人在一份声明中表示:「我们继续在内部测试我们的 AI 技术,以确保它有用且安全,我们期待尽快与外部分享更多经验。」

另外一位颇具实力的玩家则是 Character AI,这家公司由 Transformer 论文作者之一 Noam Shazeer 创办

,逐渐为人熟知。

该公司推出的 AI 聊天机器人技术允许用户与任何人聊天或进行角色扮演,比如模仿伊丽莎白女王和莎士比亚等历史人物。目前该技术是免费使用的,Character 正在「研究用户如何与之互动,然后再制定具体的创收计划。」

传百度将发布类似 ChatGPT 的聊天机器人

更能引起国内 AI 从业者关注的是,据路透社、彭博社等多家外媒报道称,百度公司计划在 3 月份推出类似于 OpenAI 的 ChatGPT 的人工智能聊天机器人服务。

消息人士称,百度计划在用户提出搜索请求时整合聊天机器人生成的结果,而不仅仅是链接。「该工具尚未命名,将嵌入在主搜索服务中,用户将返回对话风格的搜索结果。」

在去年 12 月在一次内部讨论中,百度 CEO 李彦宏曾分享自己对 ChatGPT 的看法:「把这么酷的技术变成人人需要的产品」才是最难的,希望百度新的一年「至少能有一个高成长、有创新的业务,真正的 above and beyond our expectation」。

而据《科创板日报》1 月 30 日报道,百度内部确有推出类似 ChatGPT 聊天机器人的规划,但具体时间并不精确。百度 CEO 李彦宏对于该项目的定位是「引领搜索体验的代际变革」。他在内部指出,相关技术已达到临界点,百度在其中有较大的机会。

检测利器:让大型语言模型生成的文本无处隐藏

ChatGPT 的能力纵然强大,但同时它在学校作业、论文发表等领域的滥用已经引发了人们广泛的担忧。因此,学界开始探索检测 ChatGPT 等大型语言模型(LLM)生成文本的方法和工具。

马里兰大学几位研究者对 ChatGPT 等语言模型输出的水印进行了研究。在论文《A Watermark for Large Language Models》,他们提出了一种高效水印框架,水印的嵌入对文本质量的影响忽略不计,可以使用高效的开源算法进行检测,而无需访问语言模型的 API 或参数。

本文方法可以检测到比较短的合成文本(少至 25 个 tokens),同时使得人类文本在统计学上不可能被标记为机器生成。

论文地址:https://arxiv.org/pdf/2301.10226v1.pdf

斯坦福大学几位研究者在论文《DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature》中,证明了从 LLM 中采样的文本倾向于占据模型对数概率函数的负曲率区域。利用这一观察结果,他们定义了一个基于曲率的新标准,来判断一段文章是否由给定的 LLM 生成。

研究者将他们的方法称为 DetectGPT,它不需要训练单独的分类器、收集真实或生成段落的数据集以及显式地为生成文本加水印。DetectGPT 仅使用感兴趣模型计算的对数概率和另一通用预训练语言模型(如 T5)生成段落的随机扰动。

结果发现,DetectGPT 比当前模型样本检测的零样本方法更具辨别力,尤其是将 20B 参数 GPT-NeoX 生成的假新闻报道检测从最强零样本基线的 0.81 AUROC 提升到了 0.95 AUROC。未来将公布代码和数据。

DetectGPT 检测 GPT-3 生成文本的示意图。

论文地址:https://arxiv.org/abs/2301.11305

除了以论文形式展现的检测方案,也有个人推出了强大的检测工具。比如一位来自 Hive AI、致力于 ChatGPT 检测器研究的 ML 工程师,其方案能够识别 ChatGPT、GPT-3 和其他流行 AI 引擎生成的文本。

从内部基准测试结果来看,该方案效果明显优于 GPTZero 和 OpenAI GPT2 Output Detector 等类似方法。在内部数据集上,模型平衡准确率

AI时代,掌握AI大模型第一手资讯!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

扫码右边公众号,驾驭AI生产力!

Leave a Reply

Your email address will not be published. Required fields are marked *