文章主题:智能未来大会,重磅嘉宾,人工智能,计算机系统结构,中国工程院院士,清华大学,计算机科学与技术,人工智能算力,人工智能计算机设计,平衡性原则,AI基准设计,模型规模,模型效果,多机并行,终端侧学习, Colossal-AI, 高效的内存管理系统,自动的N维并行技术,大规模优化技术,AI模型的训练部署性能,终端侧AI, 智能车, 元宇宙, 智算力, 创新力, AI for Science, 物理 informed training,physics informed optimization, 量子计算, 量子科技, 人工智能与量子计算, 百度量子计算研究所, 段润尧, 量子计算, 量子互联网, 百度AI Studio, 生态网络, AI for Science, 深度学习, 物理模拟, 分子模拟, 低复杂性终端侧学习

666AI工具大全,助力做AI时代先行者!

什么是“MEET2023智能未来大会”?

大会上来了哪些重磅嘉宾?

他们在大会上探讨了什么主题?

今年大会的主题是人工智能的发展回顾和未来展望,自然离不开人工智能领域的领军人物ChatGPT的参与。在这次盛会中,ChatGPT不仅代表了AI领域,还与人类嘉宾们共同回顾了过去一年人工智能的进步,并探讨了智能科技的未来发展趋势。

下面还是老样子,一文看尽。

不同的是,这次的内容由ChatGPT协助编辑部共同整理。整场大会主要分成三个维度:

新技术新模型变革下,对计算、算力提出的新标准、新要求、新机遇

时代级机遇求解征途中,诞生了哪些新场景、新物种、新应用

以及当下已经纵横于各行各业的AI,究竟还有什么样的新路径、新方案、新价值

新标准、新要求、新机遇

郑纬民院士:AI基准的设计能达到4个指标

在计算机科学领域,中国工程院院士、清华大学计算机科学与技术系的郑纬民教授无疑是一位泰斗人物。他的研究团队一直在探索人工智能算力的最新发展,并取得了显著的成果。在本次分享中,我们将关注他们团队所取得的三项重要成果。

简单来说,就是AI与算力基础设施的设计、评测和优化。

第一件事,提出了一种AI算力基础设施的架构和平衡设计原则。目前全国20多个人工智能超算中心基本上都采纳了他们团队的设计思想。

在讨论HPC与AI的差异时,他们首先关注的是应用领域的多样性以及运算精度的差异。为了应对这些不同之处,他们提出了一套全面的人工智能计算机设计原则,涵盖了计算平衡设计、网络平衡计算和输入/输出(IO)子系统设计等多个方面。

目前,行业整体趋势是HPC AI BigData融合在一起。未来两到四年,三者融合的服务器就会出现。

第二件事,就是大规模人工智能算力基准评测程序AIPerf

在当前的AI算力评测基准中,传统的方法往往存在诸多不足,如仅针对单一芯片、侧重于移动端硬件评估,以及缺乏可扩展性等。这使得整个行业很难找到一个完全符合需求的评测标准,于是有人决定自行制定一个新的评测体系。

要实现AI基准设计的四大目标——统一评分标准、可调整的规模、具有现实意义的AI应用以及评测程序中的多机通信,我们需要进行一系列的工作。最终,由清华大学主导的AIPerf测试平台应运而生,并在2020年11月15日正式发布。

第三件事,就是百万亿参数超大规模训练模型的加速方法

在学术界,普遍认为模型规模与模型性能之间存在明显的正相关关系。然而,当模型规模不断扩大时,CPU的内存和计算能力却呈现出一定的限制。因此,对于大型模型的训练,必须采用多机并行的方式,以充分利用各种资源,提高训练效率。

在当前的深度学习领域中,并行训练模型的方法主要有三种,分别是数据并行、模型并行以及专家并行。这些方法已经被整合进了一个名为FastMOE系统的平台中,并且已经获得了业界的广泛认可。其中包括阿里巴巴的淘宝天猫项目,腾讯以及百度飞桨的MOE模块,都采用了FastMOE系统,足见其影响力与实用性。

最后他希望,他们团队做的三点小贡献,能够推动人工智能的发展。

高通Ziad Asghar:如何让「智能网联边缘」成为现实

高通技术公司产品管理高级副总裁Ziad Asghar,负责骁龙平台的产品规划以及公司所有产品线中应用处理器相关技术。他的工作服务于公司所有业务部门,包括移动、汽车、计算、XR、边缘云和物联网。

他在大会上提出:AI处理的重心正在持续向边缘侧转移

数据的边缘化生产是多方面原因导致的,当前消费者对于数据隐私的期望日益提高,同时他们希望能够获得的数据是可靠且及时处理的。

高通专注于“基于统一的技术路线图”进行产品开发,能够全面覆盖智能网联边缘,实现规模化扩展。

高通的AI技术已经赋能20亿终端,实现这一成果的核心是高通AI引擎(Qualcomm AI Engine)。高通AI引擎包含图形处理单元、CPU,以及更核心的Hexagon处理器,其具备高度可扩展性的硬件架构,并在性能和能效方面全面领先竞争对手。

为了让AI在终端侧发挥最大作用,高通还带来多项硬件和软件技术:

支持INT4精度推理,高通传感器中枢,高通AI软件栈、Qualcomm AI Studio……

过去,几乎所有的AI推理都在云端进行。如今,我们已经开始将大量推理工作转移至边缘侧终端进行。下一步,就是实现完全分布式的AI,也就是转向终端侧学习的范式。

利用终端侧学习,将能够为每一个用户打造个性化体验,这就是高通正在前进的方向。据Ziad介绍高通AI研究团队一直专注不同的方法包括小样本学习、无标记数据持续学习、支持全局适应的联邦学习和低复杂性终端侧学习,来解决终端侧学习部署的挑战。。

Ziad相信,目前我们所利用的终端侧AI能力还只是冰山一角,而从智能车到元宇宙,终端侧AI的需求巨大。

高通十分期待能够引领市场向着充分利用智能网联边缘的方向继续推进,让智能网联边缘成为现实。

潞晨尤洋:AI落地面临很大问题,是最先进的 AI 技术训练成本太高

潞晨科技董事长兼总裁、新加坡国立大学校长青年教授尤洋,则介绍了一种全新的AI大模型解决方案Colossal-AI,面向未来各种大模型应用场景的低成本落地。

首先,Colossal-AI解决的是一个什么样的问题?从过去AI模型发展的参数量来看,2016年—2021年模型大小从200多万增长到了1.6万亿,相当于翻了成千上万倍。而不管是大企业、小企业,大家都普遍把自己的模型做得更大,因为效果会更好。

但一个很大问题是,大模型或者是最先进的AI技术训练成本太高了。Stability AI每年光花计算的钱就大概2000万美元。

因此未来迫切需要一个可扩展、高效的计算基础设施Colossal-AI。

其次,Colossal-AI主要由三部分组成。

1)高效的内存管理系统。因为大模型本质上还是太吃内存。

2)自动的N维并行技术。

3)大规模优化技术。

从三方面把AI模型的训练部署性能提到最高,目标是希望用户只需要在自己单机笔记本上写好代码,通过Colossal-AI能够无缝地部署到云端或者是超级计算机上。

目前训练大模型主要有三种并行方式:数据并行、张量并行、流水线并行。

Colossal-AI的解决方案首先是支持了上述主流并行方案,然后我们创新性地打造了2D张量并行、2.5D张量并行以及3D张量并行,以及提出了数据序列并行,还提供了降低显存消耗的异构内存管理和大规模并行优化,把它们整合起来提供一套自动并行的解决方案。

其实AI工程师、研究员,不需要理解背后的技术细节,只需要把模型的信息、计算资源告诉我们,就可以自动地把计算资源能力发挥到最大化,同时完成虚拟模型训练和自动部署,轻松低成本应用AI大模型。

浪潮刘军:智算力就是创新力

浪潮信息副总裁、浪潮人工智能与高性能计算产品线总经理刘军分享的主题是“AI新时代 智算力就是创新力”。

刘军提出了“算力当量”的概念,用PetaFLOP/s-days(PD)这个指标来衡量算力消耗,也就是每秒千万亿次计算完整运行一天,完成一个任务需要多少这样的计算量。

比如特斯拉的DOJO用于感知模型的训练和仿真,算力当量是500个PD。AlphaFold2的训练消耗300个PD。

再加上AI大模型训练、数字人的建模和渲染等方向,我们可以确切地感受到今天在AI领域的众多创新背后离不开智算力的支撑,所以我们可以说智算力就是创新力。

接下来,刘军还分享了当前智能计算发展的三个重要趋势:

第一是算力多元化。在国内市场上有十几种CPU芯片、将近100种AI算力芯片,原因是算力应用场景多元化。这就需要从系统的硬件角度、从平台的软件角度来进行相应的创新支撑。

第二是模型巨量化,大模型使得AI从五年前的能听会看走到今天能思考、会创作,下一步甚至到会推理、能决策的进步。下一个挑战是如何把大模型能力交付到众多中小企业手中,帮助他们实现智能化转型。

第三是元宇宙。现在元宇宙的构建包括协同创建、高精仿真、实时渲染、智能交互,每一个环节都需要大量算力去支撑。这里不光是AI计算,还有仿真计算、图像渲染计算,这对算力基础设施的硬件平台和软件栈都提出了更高的要求。

新场景、新物种、新应用

小冰李笛:我们为什么想和ChatGPT交流?

AI绘画、对话式AI为代表的AIGC今年在全球引发热潮,小冰公司也作为行业先行者备受瞩目:刚刚完成一轮10亿元的新融资,用于推动虚拟员工的普及。

不过,小冰公司首席执行官李笛在会上没有多谈产品,而是分享了对大家更有借鉴意义的行业趋势。

李笛认为,每一次技术变革都是在改变人与世界/人与人之间的关系

在人与世界关系这条线上,我们经历了门户网站、搜索引擎、推荐算法

它们利用计算机系统实现了高并发,一次触达很多用户。但缺点是转化率低,如果想提高转化率就需要人工客服,人力成本巨大。

下一站,该看向AI Being

AI Being与之前的人机交互相比,关键不同在于高转化率,如小冰岛App的留存率就高达39%。

另一个例子是ChatGPT,通过它获取知识比搜索引擎的准确度要低,但为什么人们都愿意和它交流?

人们在使用它时往往心里已经有了答案。如果ChatGPT给出的结果都准确,那人们会认为它很强大,即使不准确,人们也会觉得很有意思。

其实ChatGPT改善的不是准确率而是行为,让AI有了主体性。从行为模式判断与从结果上判断一个技术,就会得到完全不同的结论:

它能和你建立一种以往没有过的一种关联,这种关联的价值本身具有非常大的商业价值。

李笛认为,AI Being的未来还会引发很多新的变革。

如数字员工会使toB和toC的界限变得模糊,比如银行的数字客户经理可能会与客户变成朋友。

又比如AI Being将不再隶属于某一平台,人们在客服、手机、汽车上与同一个AI Being交流,得到更加无缝、24小时、持续连贯的服务。

同时这种方式也能建立更好的反馈机制,推动系统得到更好的发展。

AI Being比现在的虚拟偶像等数字人应用,还有千倍百倍的价值没被看到。

路特斯李博:智能车是当下机器人的第一形态

各行各业进入存量竞争时期,互联网经济机遇过去,下一个人类的星辰大海会在哪里?

路特斯科技副总裁、路特斯机器人公司总经理李博认为,「机器人时代」比「元宇宙时代」更符合人类对星辰大海的预期。

元宇宙是把人带入虚拟世界,而机器人则是把AI带到真实世界。

接下来,李博分享了对「机器人时代」的关键认知:

第一,智能车是机器人的第一形态,也是当下最重要的机器人形态。像扫地机器人、酒店服务机器人等,从市场规模、体量及社会影响力来说,和智能车相比仍存在差距。

行业经常提「软件定义汽车」,但我们认为「硬件定义软件的天花板」。例如,当不同年代的苹果手机都升级到同样的操作系统,其体现出来的性能却是千差万别的。

在更高更快更强的时代,路特斯是智能车的最佳实践平台。

基于此,路特斯机器人推出四条产品线。

智能驾驶全栈软件解决方案,包含端到端的高阶智能驾驶系统、ADAS/PAS功能、以及车端OS操作系统及中间件等。

ROBOVERSE产学研生态系统,一方面用路特斯机器人在实践开发过程中产生的优质数据,打造公开数据集,为创业公司及院校赋能;另一方面支持院校做智能驾驶的探索和尝试,在路特斯机器人的加持下,北京理工大学和同济大学的方程式车队在2022年中国大学生方程式赛事中各取得优异成绩,其中,北京理工大学路特斯无人驾驶方程式车队更是赢得2022中国大学生无人驾驶方程式大赛全国总冠军。

智能驾驶运营解决方案,核心目的是对当下智能驾驶系统能力的不足做弥补和提升。例如路特斯平行守护系统,让后台专业的平行守护驾驶员接入前台车辆,辅助前台车辆更好地完成智能驾驶任务,这一套系统在不久的将来,也会逐步对外赋能。

ROBO Galaxy智驾工具链SaaS系统,也称为智能驾驶的云端数据工厂。ROBO Galaxy 包含七大模块,分别是数据采集、数据合规、数据标注、数据训练、数据仿真、数据管理及数据监控,提供全流程服务,并构成了全生命周期的数据链闭环。

ROBO Galaxy 不仅旨在提升算法软件迭代速度,提供优质的测试环境,也致力于解决目前普遍存在的数据孤岛与业务断点问题。因此,李博认为,未来的智能驾驶产品一定是批量化、高质量、稳定地生产出来,这就要依托ROBO Galaxy,让智能驾驶开发从「手工坊」变成「流水线」。由此可见,ROBO Galaxy代表着智能驾驶未来的生产力。

百度段润尧:聪明的脑袋、足够的资源和最好的技术匹配起来,就能做出量子计算机

当前,量子时代正在加速到来,接近70%全球企业都想或正在布局相关技术。国内像百度这样的技术大厂,今年率先给出了从底层硬件到上层应用的一整套产业化解决方案。

百度量子计算研究所所长段润尧就在大会现场分享了百度是如何思考量子计算的。

我们身处的这个时代其实已经到了第二次量子革命,这几年应该是量子真正开始和计算相结合的关键几年,为什么说量子计算出现是必不可少的

第一,芯片尺寸小到一定程度就到了量子尺度。要想摩尔定律延续下去,就需要考虑新的计算模式。而且量子计算本身,能耗也非常低。

第二,数据量很大。想模拟一个量子系统,哪怕非常小但所需存储量也很巨大,比如300个量子比特,就超过整个宇宙可见原子数目。

第三,全新计算范式,在解决特定问题上有指数级优势。

第四,信息安全,可以攻破RSA系统。

也正因为这些可能性,量子科技一直受到行业关注。有相关机构预计,到了2031年将有8000亿元市场规模直接与量子计算相关。

那么量子计算可以应用在那些方面呢?典型的有,药物研发、金融科技、材料模拟、信息安全等领域。

除此之外,量子计算与的人工智能还是一个相互纠缠的关系,从上层应用、框架到底层硬件都可以产生相互联系。另一方面,量子计算也受益于AI,尤其是深度学习。2020年百度就曾搭建了一个量子机器学习平台。

即便有这么多机会,那实际真正走入生活还需要多远?段润尧团队正在做的,就是量子计算的产业化道路。

那就需要解决这几个方面的问题,硬件的稳定性、好的软件平台,以及自动化的芯片设计方案。

百度提出了QIAN战略。Q就是量子算法、量子AI及量子架构。I就是软件和硬件的基础设施。除此之外,还要真正识别出一些具有重大应用价值的场景,A就是实际的一些重要的应用。最后当然还有网络,N指量子互联网,除此之外我们也需要建立生态网络。

演讲的最后,段润尧做了一下展望:

实际上我二十多年来一直在思考一个问题,如何真正能够造出一台量子计算机,我的结论其实很简单,就是聪明的脑袋,再加上有足够的资源和现有的最好的技术,匹配起来就可以做出量子计算机。

从这个意义上讲,全球可以有很多不同的组合都可以做出这样的机器,这个过程是可以等价的。

微软刘铁岩:AI for Science:追求人类智能最光辉一面

同样正在探寻AI for Science价值的,还有微软亚洲研究院副院长,微软研究院科学智能中心亚洲区负责人刘铁岩

最近十年,人工智能在很多任务已经可以和人类媲美,效果惊艳。但这些结果主要集中在感知和认知层面,并没有反映出人类智能里最光辉的一面——认识世界和改造世界。

微软前同事Jim Gray曾对科学发现的四个范式做了总结,分别是经验范式、理论范式、计算范式和数据驱动。最近几年大家尤其关注的一种新范式,叫做AI for Science。它是前四种范式的有机结合,发挥了理论和经验各自的特长,又把人工智能和计算科学融合在一起。刘铁岩认为,它值得叫做第五范式

接着他就AI for Science分为三个方面进行深入介绍。

第一,如何用AI求解物理方程?

我们可以不再用数值解法来求解物理方程,而是通过AI得到更高效解。并且只要有足够算力就可以无限生成完美的训练数据。此外,近年来还出现了一种physics informed training,甚至不需要提前生成训练数据,只需要在训练的过程中,动态验证AI模型的输出是否满足物理方程,定义损失函数即可,而验证方程比求解方程简单得多。刘铁岩介绍了他们团队在这个方向上的一些最新研究成果,如Graphormer,Deep Vortex Net,并展示了它们在分子模拟、流体模拟等领域取得的突出成果。

第二,如何用AI从科学数据中发掘有效信息?

各种实验设备每年都产生海量数据,但显然不能靠人工有效处理;还有每年都有近150万篇论文发表,但任何科学家都没有精力读完。刘铁岩的团队利用AI方法来自动分析高能粒子对撞的射流数据,提出了LorentzNet模型,将洛伦兹等变性构建在模型之中,在新粒子发现领域取得了比前人显著提高的精度;他们还利用科学文献训练了SPT模型,对科学文献信息的科学知识进行抽取、总结、和预测。

第三,如何从实验数据出发,用AI发现新的物理方程,形成科学发现的闭环

比如物理的守恒定律,一旦实验数据不满足守恒性,往往暗示着一些新物理规律的存在。刘铁岩的团队设计了一个双通道的AI模型,可精准地从实验数据中自发地学到很多已有规律。

最后,他对AI for Science未来的发展表达了希冀。

我们相信AI for Science将会对自然科学产生巨大影响,尤其在解释生命奥秘、以及保障环境可持续发展方面,都有很大的潜力,沿着这两个方面我们进行了很多探索。也希望大家加入我们,一起推动科学发现的新边界!

新路径、新方案、新价值

阿里贾扬清:工程化和开源是AI普惠最重要的两大支撑

AIGC爆发成为当下AI绕不过去的话题。如果溯源,是从1999年的纹理生成,再到2015年前后的神经风格迁移,再到现在更强语义的AI创作。这些创新背后的推动机制,总结来说就是AI普惠的两大支撑:AI工程化和开源。

这也就是阿里巴巴集团副总裁、阿里云计算平台事业部负责人贾扬清分享的主题。

工程化,让开发、迭代到应用的路径变得更加简单;开源可以让工作开展更加迅速,实现市场共赢。在这个基础之上,AI的产业落地有以下明显趋势:

第一,云原生的AI工程化平台;

第二,大规模端到端的异构计算体系;

第三,通过算法的系统组合实现更加智能的、贴近用户需求的产品;

最后,通过算法的开源助力AI在产业垂直化落地。

这四个趋势,无论从供给角度还是需求角度,都是推动AI进一步往前走的方向。接着贾扬清从这四个角度介绍了他们正在做的事情。

其中,在端到端的异构计算与优化上,阿里开源的分布式训练框架EPL和推理优化工具PAI-Blade,能让算法工程师在训练和推理环节大幅提升效率;此外,通过软硬件协同优化,他们也研发了更贴合AI需求的计算设施。

在这个领域比较有意思的点,是AI计算与传统科学计算之间有很强的共性。AI for Science这个趋势很明显,分子学、物理、化学等领域需要处理海量科学数据,而AI和数据系统所积累下来的异构计算的模式和环境,正好符合这个需求。

“今天,非常多的专家、企业、开发者们在建设着上层的AI算法;而在AI底层,如何让工具变得更加易用、更加普惠,这正是我们在做的事情。”

自动驾驶:路上见真章

作为业内最具影响力和号召力的第三方,MEET2023智能未来大会同样设置了一场自动驾驶论坛——路上见真章

从第一年围绕Demo谈技术进展,第二年谈如何交互,到去年谈到如何商用,顺应时代之发展,今年就开始谈到上路On the Road的问题。本次邀请到的两位代表性嘉宾分别是:

禾多科技创始人、CEO,国内自动驾驶最早的先行者倪凯;小马智行副总裁、北京研发中心负责人,清华姚班校友张宁

在量子位总编辑李根的主持下,主要围绕三大话题展开:过去成果进展、核心驱动力以及行业趋势。

“上路”进展

首先是今年一年,对于禾多和小马智行都是关键的时间点。

倪凯表示,今年是自动驾驶飞速发展的一年,就禾多来说,跟广汽的合作算是开结果,跟传祺的影酷和埃安的AION LX,不管是高阶的泊车还是高阶的行车都有落地。这样的上路运行,打开禾多未来服务更多用户、产品落地的先机。

而张宁总结道,三大业务板块包括Robotaxi、Robotruck、面向辅助驾驶的乘用车业务,都取得了了关键性进展。比如Robotaxi实现了前排无人,Robotruck获得了整个智能卡车领域最大的单量。

那么跟行业预期相比,今天站在这个时间节点为什么出现2022年?倪凯和张宁都认为,今年整个上下游产业链正在肉眼可见的蓬勃发展,这是一个非常好的趋势。

核心驱动力

既然如此这背后的核心驱动力又是什么呢?

张宁表示,技术依旧是所有发展的核心驱动力。到了今天有两个趋势越来越明晰,一条路径往深水区深耕;另一条是整个技术的普惠和规模化。

倪凯则更关注两个驱动力,一个整个社会或行业,对自动驾驶未来的预期,包括经济效益、社会效益,这样才会有更多创业者、资本参与进来。

第二大驱动力是为消费者创造价值。尤其是跟四五年前相比,辅助驾驶普及率越来越高,这种商业化落地,是真正地驱动人们,越来越笃定地走在这条道路上。

行业趋势

而对于目前整个行业而言,明星公司说倒就倒,市场都在说自动驾驶寒冬,两位是如何看待行业的趋势变化的?

张宁则表示,这跟整个资本大环境相关。做无人驾驶是需要战略定力的一件事,像跑马拉松,需要耕耘最终才能取得收获。对Argo而言,其实这是一个个例,只是刚巧在节骨眼上放大化了。很多时候一点点变化,背后其实是革命性、阶段性的跃迁。我们很看好2023年自动驾驶技术可以在国内进一步落地应用。更多耕耘在L4领域的玩家,真正以无人驾驶形态向大众提供服务。

在倪凯看来,目前有两个比较大的时间点。第一件事,高阶自动驾驶大规模落将在2025年形成相对成熟期,后面就是一个比较线性或者比较快速的增长状态。第二件事本质上是跑通商业模式,这可能是一个更长要去探索的事情,需要整个行业来共同把它从黎明前的黑暗推向最后真正光明的艰难过程。

最后,还有一个互动打分的环节:如果将自动驾驶的终点定为满分,那么现在距离100分还有多远?

张宁认为,对小马智行来说,已经到99.99后面的小数点了,可能我们也就只差临门一脚了,但要耐得住寂寞、能够有这种定力是很难的一件事情。

而倪凯则表示,他们现在是在往90分、100分走的过程中,接下来的三年非常关键,可能是真正打磨产品,让产品体验上升一个台阶,最终赢得市场的一个关键时间。

中关村科金张杰:对话式AI走到L0-L5的哪个阶段?

在数智化转型的大趋势中,中关村科金以AI 数字化营销·运营·服务为引擎,为500余家金融、零售、教育、医疗、智能制造等行业头部企业提供了数字化解决方案。

中关村科金技术副总裁张杰,在会上分享了关于对话式AI在企业服务中的一些观点和经验。

在过去60年时间里,对话式AI经历了三个大的技术发展阶段:基于规则匹配的时代、“虚拟个人助理”应用的时代,基于大规模预训练语言模型的时代。

发展到现在的阶段,张杰认为目前对话式AI几个趋势值得关注:

细分赛道,过去十几年间对话式AI主要的应用场景还是在toC,如智能音响、智能家电、个人手机助理等市场渗透率较高,依照《AI对话系统分级定义》已经能够达到L3的等级。相比之下,企业服务方面市场渗透率比较低、开发潜力大,同时技术成熟度相对落后,只能够完成单一场景下的对话,在L1-L2之间。

对话形式,在脑机接口真正商用落地之前,对话仍然是最主要的一种沟通手段,除了基础的文本和语音交互外,多模态、数字人的交互方式会越来越多,比如远程银行、数字营业厅等。

从技术维度上来看,对话式AI不仅是对话的技术,将来还会是多种前沿科技的一个集大成者,融合感知智能、认知智能和决策智能。

聚焦在企业服务赛道上,张杰认为对话式AI潜在市场空间巨大,应用场景丰富,但现阶段面临着几项技术挑战,例如场景迁移问题、可解释性,快速运维等。”

如何解决这些难题呢?中关村科金在过去8年间,服务了10多个行业、500余家客户的对话场景,总结出了一套双引擎对话系统的技术实践。领域知识中台和对话分析系统作为对话决策系统的双引擎,一方面,领域知识能够提升系统的可解释性和可运维性;另一方面,会话分析能够挖掘出话语背后的常见目的、和常见的行为模式。

而对于未来发展方向,张杰表示:“对话式AI在企业服务赛道上存在巨大的市场空间和技术提升空间,为此中关村科金提出了领域知识和会话分析双驱动的对话系统。希望通过对话式AI为企业打造金牌销售,帮助企业带来创新增长和用户体验的提升。“

AI for Science圆桌论坛:AI三要素之外,还有哪些挑战?

AI for Science在这一年备受瞩目且进展不断,除了AlphaFold所在的生物医药领域,还在材料、物理甚至数学上发挥出越来越重要的作用。

下午的圆桌论坛话题就聚焦于此,参与讨论的嘉宾有:

深势科技 CTO胡成文,负责组建业务研发、平台研发两大团队。深势科技致力于运用人工智能和分子模拟算法,结合先进计算手段求解重要科学问题。

百图生科BioMap副总裁、产业基金董事总经理瞿佳润。百图生科是中国首家由生物计算引擎驱动的创新药物研发平台。

英矽智能联合首席执行官兼首席科学官任峰。由他带领的药物研发团队,是业内首批利用AlphaFold展开药物研发实践的团队之一。

讨论的第一个话题,面对AI for Science在今年的迅速火热,会觉得有一些意外吗?

三位嘉宾一致认为,这其实是可预测、可预见的。

胡成文重点介绍了AI for Science这个概念的起源和发展情况:

2018年最早由由深势科技首席科学顾问、中科院院士鄂维南提出2019年各大高校开始成立这个方的实验室。2021年之后迅速被英伟达、DeepMind等国际机构公开采用。2022年微软在全球成立了重磅机构AI for Science研究院,国内外产业界也纷纷跟进。

胡成文希望有更多同仁加入进来,一起推动AI for Science从概念到落地、从学界走向工业界,真正解决行业面临的实际问题。

AI4S备受瞩目是其重要性和发展的必然结果,AI4S能够在很多人类文明的基础且关键问题的研究上给予我们高质高效的支撑,当现有的途径或者工具无法满足时,新的,更好的途径和工具就会出现,且被迅速应用起来。

瞿佳润的理解是,AI for Science对应着AI for Industry,也就是说AI在工业界的应用开展更早。科研上希望利用AI去提高效率的痛点长期存在,所以一旦当技术条件成熟,AI for Science的快速铺开还是可以预见的。

任峰则提出AI for Science还分为狭义和广义。广义的AI for Science不光是解决底层的问题,也解决实际应用上的问题,它的爆发完全在意料之中。

下一个话题,AI for Science对于目前的科研和应用带来了怎样的变革?

胡成文从计算层面给出回答。在复杂问题上往往数据线性增长,而需要的计算量指数级增长。AI可以在在保持科学原理精度的情况下降低它的计算复杂度,解决传统的科学范式解决不了的问题。

瞿佳润具体举了生物制药的例子,有了AI for Science工具之后,流程从3、4个月缩短到一个月,显著提升效率问题。另外在靶点研究上,AI还能把问题系统化,最终体现在成功率的提升。

任峰认为传统的药物研发都是靠人来想象的,有了AI加持可以探索更多的化学空间和生物学空间,带来更大的创新性。

第三个话题,还有哪些领域可能复制AlphaFold今天在生物医药领域所带来的改变?

瞿佳润提到了生物领域还有基因组学上的预测,包括一个细胞怎么表征免疫激活状态,再进一步到药物响应问题。

胡成文认为,很多问题本质上都是底层原子、分子的性质/结构/相互作用力决定了上层宏观的性质,因此AI for Science在很多基础科学的研究方面都有广泛的发展空间。近年来,人工智能和传统科研结合呈现的巨大潜能使得人工智能在科学中的应用出现了众多重要主题。与此同时,AI4S(AI for Science,AI用于科学发现)在工业产业实践中的应用潜力已被头部厂商充分认可和重视。生物科技、能源、半导体、材料等领域的行业先锋已经开始系统性投入AI4S的研究和具体行业解决方案的大规模应用。在工业仿真、合成农业、环境科学、机器人、天体物理、地质学、图形学等领域,AI4S也有巨大的想象空间有待开发。未来,AI4S带来的将不仅仅是几个点上的突破,而是科研方法的全面改变。从生命的基本组成(蛋白质)到世界工业的基本要素(材料)到各个科学技术领域,AI4S 不只是解决具体问题的有力工具,更是重新定义科学问题的系统性思路,我们深势科技正在引领实践这一思路。

最后一个话题,AI for Science目前面临的最大挑战是什么,还是算法、算力、数据这三要素么?

任峰认为最大的挑战是如何管理预期。预期太高的话,任何一个失误都会造成社会对整个行业失去一定信心。目前就算有AI的加持,只是提高了效率和一些成功率,但并不能做到100%的成功。

瞿佳润认为生物学问题上最重要的还是数据,比如体外的数据很难映射到体内环境,并且目前公开数据的质量还是非常差的。另外无论是AI还是传统生物学手段做科研,还需要一个好的研究体系去配合。

胡成文认为传统的三大要素肯定还是重要的,新出现的挑战还有人才问题,尤其是跨学科复合型人才比较紧缺。以及生态共建问题,相比于传统AI在商业形成了完整的生态链,AI for Science在这方面刚开始起步。

腾讯刘伟:只靠数据驱动的AI缺乏可解释性,要与领域知识相结合

最后登场的,腾讯医疗健康AIDD技术负责人刘伟,他从腾讯制药AI算法实践的角度来探讨AI for Science的价值。

主要做了三个部分的介绍:腾讯云深平台、平台案例分享,以及腾讯云深AI平台的技术优势总结。

首先,目前腾讯云深AI药物发现平台主要包括两大功能模块,第一个功能模块就是小分子药物发现,第二块是大分子药物发现,主要指抗体药物发现。

其中,小分子药物发现还包括蛋白质结构预测、分子生成等模块,大分子里面包括抗体结构预测、抗体抗原的对接以及抗体的人源化改造等模块组成。

接着,刘伟分享了他们几年来制药AI实践中的典型案例。包括国内做得最早的蛋白质结构预测tFold、结合物理学特征和本地数据训练的ADMET基础模型以及骨架跃迁分子生成算法等。

基于这些实践的积累,刘伟团队搭建了属于自己的优势壁垒。核心有四个方面。

第一块,就是AI算法方面。药物AI研发这块的最主流就是图神经网络,在做药物之前,腾讯在深度图神经网络就有深厚的研发积累,包括现在的大规模随机采样、自监督学习和层次图深度学习等领域。

第二块和第三块,就是大算力、大数据的能力。比如在一个庞大的化学空间发现药物分子是不容易的,这就要求AI模型能够理解这么大的空间,也就需要分子、蛋白质、核酸等领域的大模型,以及训练大模型的算力和基础架构。

最后一块,AI与物理、化学领域知识方面的结合。这是基于之前的算法算力上面的能力新生长出来的独特优势,腾讯云深在AI与量子化学的结合方向上研发了独特的DeepQC框架,可以在大的体系上,花费较少的算力达到高的精度。实际上,只靠数据驱动的AI缺乏可解释性,如果能将AI算法跟物理、化学领域知识结合起来,这样训练出来的模型过拟合风险较低,在实际应用中也有非常好的可解释性。

以终为始,生生不息

即将过去的这一年,是时代级机遇与挑战交织的一年。

一方面我们深刻的感知到,随着硬科技创新、产学研转化、全新幂集创新周期的到来,一场关于数字化、智能化的机器革命,正在加速落地。

但另一方面,全球风云波云诡谲,技术创新也来到深水区,内外交织的挑战比以往来得更加严峻。

于是关乎本源、关于终局的思考求解,要比以往更加迫切:

科技发展的起伏周期,如何穿越?

是终极场景倒推技术创新,所诞生的新场景、新物种、新应用?还是顺势而为下的新计算、新方案、新价值?亦或是以一敌百,坚定的技术创新信念者?

以终为始,生生不息。

智能未来大会,重磅嘉宾,人工智能,计算机系统结构,中国工程院院士,清华大学,计算机科学与技术,人工智能算力,人工智能计算机设计,平衡性原则,AI基准设计,模型规模,模型效果,多机并行,终端侧学习, Colossal-AI, 高效的内存管理系统,自动的N维并行技术,大规模优化技术,AI模型的训练部署性能,终端侧AI, 智能车, 元宇宙, 智算力, 创新力, AI for Science, 物理 informed training,physics informed optimization, 量子计算, 量子科技, 人工智能与量子计算, 百度量子计算研究所, 段润尧, 量子计算, 量子互联网, 百度AI Studio, 生态网络, AI for Science, 深度学习, 物理模拟, 分子模拟, 低复杂性终端侧学习

AI时代,拥有个人微信机器人AI助手!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

搜索微信号aigc666aigc999或上边扫码,即可拥有个人AI助手!

Leave a Reply

Your email address will not be published. Required fields are marked *